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INFRARED SPECI‘ROSCOPIC STUDIES ON METAL CARBONYL COM-,
POUNDS

XVII*, A FREE-ROTATIONAL MODEL FOR THE INTERPRETATION OF
THE INFRARED SPECTRA OF THE COMPOUNDS CoM(CO)9 (M Mn,
Te, Re)
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Summary

The infrared spectra of the compounds CoM(CO), (M = Mn, Tc, or Re)
can be fully interpreted only in terms of a model which allows for a free
rotation around the Co—M axis. The mathematical treatment of this model is
presented.

Introduction

Recently we reported [1] the infrared spectra of pure samples of the
compounds CoM(CO), (M = Mn or Re), and suggested that the spectra can be
fully interpreted only on the basis of a ‘“‘free-rotational model”, since for the
“rigid” molecule neither the local nor the overall symmetry can explain-both
the observed number and the relative intensities of the C—O stretching bands.
The hitherto unknown CoTc(CO), has since been prepared [2], and found to
have a spectrum completely analogous to those of the manganese and rhenium.
compounds.

We present below the mathematical treatment of the free rotatmnal
model.

Results and discussion

We first start from a rigid “staggered” molecule. This geometry was as-
sumed recently in a broad line 5°Co and 55Mn NMR study [3] by Mooben-y
and Sheline.

' The numbenng scheme for the equatonal llgands is shown in Fig. 1. The,

Fox Part XVI[ see ref. 5 - : L
** Present address: Technisch-chemisches Lahoratonum der ETH CH—8006 Zﬁnen. watzerland ,‘ .



L@ 2325 5 nEY
YUKy, homamg) Qs g iy il
ke mymy mil i el ia
"3 Ky mymliy 7y g

4 Ky, m,\|/ te I} ig
%j Koydg g g 15

N P

N i v . ’KJ c, ¢ &,

‘7 L :

| rsymmetricat: ! Ay o e
-8 : K T2
- 1 Ke,

'F;g 1. Numbenng scheme for the equatona.l €O ligands in the staggered confxgu:atxon of the COM(C0)9
molecules, and the definition of the angle <y. (The axial hgands have number 5 on the M = Mn, Tc, or Re
atom, and numhex 9 on the Co atom.)

" Fig. 2. "Orce-constant matnx for the staggered form of CoM(CO)g molecules.

axial CO group bonded to the M= Mn, Tc, or Re atom is numbered 5, and that
bonded to the cobalt numbered 9. The construction of the force constant
matrix is given in Fig. 2, in which the symbols m; refer to geminal interactions
within the M(CO), (M = Mn, Tc, or Re) half of the molecule, ¢; to the gemmal
mteractlons within the Co(CO), half, and i, to interactions between ligands in
the two different halves. The 3 X 4 block containing the eq---eq’ interactions is
framed by a heavy line because it has a special role in our discussion.

At this point we introduced into the model slight constraints by ‘attribut-
ing the same K, value to all four equatorial CO groups of the M(CO), entity,
and identical K 3 values to the three equatorial CO groups of the Co(CO),
fragment, which is not necessarily true for a rigid C, symmetry. These con-
straints have the consequence that neither the interaction constants my, my,
mg, ¢y, and c, are “‘split”’.

The symmetry coordinates constructed in line with these slight constraints
are shown in Table 1. The F matrices constructed in terms of these symmetry
coordinates (point. group C.:6A'+3A4")are glven in Table 2. The expressions
for terms Fy3, Fiq, F35 and Fyg in species A, and for F;5 and Fge In
species A", which are too long to be placed in the matrix scheme, are glven
below the. matnces

‘We can see that the two-by-two blocks" of both species, refering to purely
~ equatorial types of symmetry coordinates of the M(CO), and Co(CO)3 frag-
. ments, have identical diagonal elements ie.r

FslA )__Fssr(A'_') -Kl —m, : R . @)
‘and ‘ _ o ‘
Fes (A) (A ) =K, —¢c, . ' o (2

To obtam complete identity . of these blocks,. and thus a doubly degenerate
-second—order spec1es, it must be assumed ‘that ‘the off-dlagonal elements be_
'equal '
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Further, to remove the possibility of mixing between degenerate and non-
degenerate modes, it must be postulated that the following three off-dlagonal
elements vanish:.

F, =F_=F_=0 ' (4)

In this way, instead of the 6th-order species A’ and third-order species A" of
pomt group C, we obtain a fourth-order totally symmetric species, a first-order
species B, (loca.hzed on the groups M(CO)y of C,, local symmetry), and a

second-order species E, as assigned previously [1].
By combining constraints (3) and (4) we can obtain a series of equatxons

TABLE 1

C—O STRETCHING SYMMETRY COORDINATES FOR THE RIGID “STAGGERED” FORM OF THE
MOLECULES CoM(CO)g (M = Mn, Tc or Re)

Species A’ Sy = (Ary + Arg + Arg + Arg)/2
S =Ars
. S3=(Arg+Arq+ Arg)l\/3
S4 = Arg
S5 = (Arl + Ar2 -_ Ar3 — AT4)12
S¢ = (28rg — Ary — Arg)\/6

Species A"  S7=(Ary — Ars + Arg — Arg)/2
Sg=(Ar; —Ary —Arz + Arg)/2
S¢ = (Arg — Arg) \/2

TABLE 2

F MATRICES (SPECIES A" AND A") FOR THE RIGID “STAGGERED” FORM OF THE COM(CO)g
COMPOQUNDS

F(A')= Ky +m; + 2M2 2m3 \/3 2:‘3 g Fie
ig iz o
K3 +2cy \/302 F3s o
(1] (1]

(symmetrical)

Ki—my Fs¢
K3—¢3

1 .
F13=—\-/-(i1+12+i3+i4+i5+i6)
3 ’ .
Fio=— Gy +iz)——= (3 +ig +i5 +ig)
16=- @y +12)——— U3 +ig*+is *ig
Ve N '
P
F3as =\/———' @iy —ip +izg—igq—ig +ig)
3 -

: 2 1
Fsg=—— (4 —i3) ——— (I3 —igq —i5 +ig)
N3 N

F(a")= Kj+m;— 2m2|10 Fa%

» -

{K;—ml Fsg .
(symm.) K3—cy .

|
i o

F79=:/—(l3—!4+i5—'6)
2. T

1 : :
Fgg =:/— (i3 +ig—i5 —ig)
2 . .
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Fig. 3. Numbenng scheme for the equatonal CO hgands in the echpsed conﬁguranon of the CoM(CO)9
molecules. - -

. Fig. 4. The block of the eg--eq’ mtetactxon constants in the force constant matrix of the ecl.\psed model
of CoM(CO)g molecules .

- which express the eg--eq’ type mteractlon constants by the constant value of
(§V3)F; 5 and in terms of Fg,, which is the new symbol for the off diagonal

element of the doubly degenerate species, i.e.:

(E) F (A') =Fg (A") - (5)

These equatxons are shown in the right hand column of Table 5.
Now we repeat all the above procedures with another rigid model, namely
the eclipsed one, which has again C_ overall symmetry (Fig. 3). In the force
. constant matrix only the 3 X 4 block of the eg--eq’ interactions, framed in
Fig. 2, need be replaced. The new eg--eq’ interaction constants are now la-
belled /;, and their new block is shown in Fig. 4. We see that instead of the six j;
values of the staggered model now there are seven [, constants. The new set of
symmetry coordinates is given in Table 3. The A’ species is now of seventh
order, and the species A" of second order, since the B, -type vibration of the
M(CO)3? fragment (S, ) is now symmetrical with respect to the plane of sym-
metry. The F matrix constructed on the basis of the new force constant matrix
and symmetry coordinates dlffeIS from that of the staggered model only in the
elements composed of the eq-—--eq’ 1nteract10n constants /;---I,;. These are given
" in Table 4.

With the same constraints as before, we obtain the expressions for the /;
constants, which are shown in the left hand side of Table 5. The numerical
results obtained by using the values F, ;, = 0.36327 and Fg, = 0.25192 (final
values obtained [6] for M = Mn) are shown in Fig. 5. The points of both
models fit into the same cosine.curve, and it is clear that the value of the
interaction constants e, between a (CO)C° and a (CO)M ligand can be ex-
pressed for any rotational angle v defined %y the two mteractmg ligands by a
" single equation (6).

TABLE 3

‘c-o S'].RETCHING SYMMETRY COORDINATES FOR THE RIGID “ECLIPSED” FORM OF THE
MOLECULES CoM(CO)g

Species A’ 7- Sy = (Ary + Ary + Ar3 + Arg)/2
- ) Sz = Arg

s3 = (Ar5 + Arg +. Arg)[\/a

Sq4 = .

Ss = (Arl — Ar3)/\/2

S% = (2Arg — Arq — Ars)/\/e
] S7 = (Ary — Arz + Arz — Arg)/2 -
. Species A" . . ' Sg=(Ary — Arg)N2

L . . 89 =(4ar; —. arg)iNj2 -
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TABLE 4

FMATRIX ELEMENTS CONTAINING THE eq -+ eq" INDIRECT INTERACTION CONSTANTS OF THE "
ECLIPSED FORM A 7

Species A" (7T X 7) -

-1
Fia= Uy + 1 + 213 + 24 + 215 + 21g + 21q)
2: o
1
Fls-_--\/—(11+12—~l3—-14—ls‘—16+2’7)
6
F L 4y =1+ 215 —215)
s=—— () —Iz2 +213— 24
N/
1
F37=—— (3 + I3 + 213 + 2l3 — 25 — 2lg — 217)
2\/3

1
F55=:/— @ —~Iz2 —13 +1q)
3

1
Fg7 =\—/— (g +lp — 13—l +1ls+lg —2ly
6 .

Species A'(2 X 2)

Fgg =15 —lg

V8 V3 R
e,y——é—F '—?’—Fs., cos Yy : (6)

In the general case (for a model with C; overall symmetry), there are 12
different e, constants, which, by forming pairs, reduce to seven in the eclipsed,

TABLE 5

EXPLICIT EXPRESSIONS OF THE eg--eq’ INTERACTION CONSTANTS OF THE ECLIPSED AND
STAGGERED FORM OF THE CoM(CO)9g MOLECULES

Eclipsed ) ' Staggered
Symbol Angle Value Symbol Angle Value
' V3 /3 ' . 3
I o° —— F13+— Fgq is 15° ‘—{— Fyg+f——- + 2 Fgq
3 6 2J2 2.6
3 1 3
1s 30° . —— Fj3+— Fgq - i -45° \—‘/“ Fl3+—_F67
6 2 6 .
/3 NE ' : 2 1
ia 60> = — Fi3+-— Fg¢q ) i3 - 75° l/-— Fizg+{ —— —— Fe1
6 6 . & 2J2 2./6
V3 . V3 1
17 90° ~— Fi3 w i 1087 Sm Fiy—|—-——— ) Fe
6 6 2J2 2Js
o V3 3 3
i3 - 120 —— Fiy3——— Fgy ia . 135° ‘ \/-—— F13-—~— Fs-,
6 6 : T8 \/
/ - .
3 1 3
173 150° T i 165° - . \/— Fia— —_ +“)F67 :
. 6. z : : : 6. 2\/2 2\/6
b 180° V3 V3
27 80 —-Fl3—— F67' -
6 - . 3 L "
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Fig. 5. Numerical values of the eq-eq interaction coostants of CoMn(CO)g vs. the angle 7 in the
staggered (+) and eclipsed (©) form.

and to six in the staggered model. Keeping all other force and interaction

- constants unchanged, substituting any set of the eq---eq’ interaction constants
satisfying eq. (6) into the 12 positions of the 3 X 4 block of the force constant
matrix gives the same calculated spectrum, both from the point of view of
frequencies, and of intensities. Also the calculated 13CO isotopic spectra are
completely identical, including also the eigenvectors, i.e. the intensities, ir-
respective of whether the isotopic ligand is in position “6” or in “7”°, which zare
not equivalent positions either in the staggered or in the eclipsed rigid model.
This equivalence is not achieved in the calculated spectra if the eq---eq’ inter-
action constants do not satisfy eq. (6), which is the key to the free-rotational
model of this geometry. '

From the energetic point of view there is no other physical evidence for
completely free rotation around the Co—M (M = Mn, Tc, or Re) axis in these
compounds. However, a simple geometrical analysis makes the absence of ener-
gy barriers evident. Whereas in the compounds M, (CO), , (M = Mn, Tc, or Re)
the maximum non-geminal CO---C'O’ distances, i.e. the energy minima of a
torsional movement, coincide for all four equatorial ligands of a M(CO), frag-
ment, reinforcing the repulsions and hindering the free rotation even in the
gaseous state {4,5], in the compounds CoM(CO)g, because of the combination
of a local C4 with a local C3, symmetry, the repulsions add, with phases
shifted by 30° If we represent the potential curves of the single ligands by
cosine functions, these cancel completely in the case of 30° phase shift to give

“a straight line for the overall “potential curve™. To see the effect of the devia-
tion of a single potential curve from a cosine function we examined also an-
. other type of curve, namely a periodic dispersion function which gives more
acute maxima and flatter minima: :

: : 1 — cos 3y]—1

rn=[1 “’T’"l] @

where r is the repulsmn between -one rotatmg cO hgand of the fragment
M(CO), and the C'O’ groups of fragment Co(CO); in function of the rotational
angle kg and b is the “half band width>’ wmch determines the acuteness Wlth b
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as low as 0.25, the sum of the four individual curves results in an “‘overall
potential curve” with energy differences between maxima and minima not
greater then 1/10 of those of the rotational potential curve of the homonuclear
M, (CO), , compounds calculated by use of eqn. (7). Thus free rotation can be
considered as confirmed in terms of geometxic analysis. _
The numerical solution of the inverse eigenvalue problem for these com-

pounds having a fourth order, a first-order (inactive), and a second-order (de-

generate) species for the C—O stretching mode was obtained by a new method

of calculation [6]. The description of this method and the presentation of the

complete set of C—O stretching force and interaction constants of the triad
CoM(CO), will be the subject of subsequent publications.
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